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The linear perturbations of the flow of a non-diffusive fluid are considered. The 
classification of the normal modes of parallel flow of an inviscid stratified fluid pre- 
sented by Banks, Drazin & Zaturska (1976) is here extended to encompass modes 
which propagate at  infinity. When the basic flow is unbounded and the buoyancy 
frequency is non-zero a t  infinity the five classes presented earlier are augmented by 
three further classes: for a given flow and wavenumber they are (a)  a continuous class 
of non-singular stable modes which are modifications of internal gravity waves by 
shear; ( b )  a continuous class of stable modes which are singular a t  each critical layer 
but otherwise similar to those of class ( a ) ;  and (c) a finite number of marginally stable 
singular modes with over-reflexion. This classification is illustrated by many new 
results. Some asymptotic properties of the stable and unstable modes are found for 
large values of the Richardson number and for long waves. Two prototype problems, 
in which the basic flows are a piecewise-linear shear layer and a triangular jet, are 
solved analytically. The modified internal gravity waves for a Bickley jet with uniform 
buoyancy frequency are treated to illustrate the complementary nature of the pro- 
pagating and evanescent modes. This treatment is both analytical and numerical. 
The general ideas are further illustrated by a numerical study of the stability charac- 
teristics of a hyperbolic-tangent shear layer. Finally the modes for a basic flow of 
boundary-layer type are found in exact terms of a hypergeometric function. 

1. Introduction 
We have given an overall picture of the properties of the normal modes for a bounded 

shear flow of inviscid stratified fluid (Banks et al. 1976). These linear modes comprise 
Kelvin-Helmholtz instability, stable internal gravity waves, and other classes of 
stable waves. The picture included a classification of all waves, some general asymp- 
totic results for small and large values of the Richardson number of the basic shear 
flow, and detailed numerical results for a few special flows chosen as exemplars. We 
may add here that this general picture is nicely complemented by the useful work of 
Yih (1974)) Bell (1974) and Leibovich (1979). There have been so many papers on the 
mathematical problem, mostly giving detailed results for particular flows, and the 
problem itself has such a rich structure that a overview of its general properties is 
especially valuable. 

Our previous results were applied and are applicable to unbounded flows for which 
the density tends to a constant, and therefore for which the buoyancy frequency tends 
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to zero, a t  infinity. However, they are not applicable to modes which may propagate 
at  infinity, and so are only partially applicable to the important class of unbounded 
basic flows in which the buoyancy frequency tends to a constant a t  infinity. Our 
present work gives a similar overall picture of the normal modes for these unbounded 
basic flows. The constant buoyancy frequency a t  infinity permits both stable modes 
representing the scattering of an incident wave by the basic shear flow and unstable 
modes which decay very slowly at  infinity. At resonance between these two kinds of 
modes the amplitudes of the reflected and transmitted waves are infinitely greater 
than the amplitude of the incident waves; near resonance there is over-reflexion, the 
initially surprising (Jones 1968) but now well-known phenomenon whereby the am- 
plitude of the reflected wave is much larger than that of the incident wave. 

These problems are governed by the Taylor-Goldstein equation, namely 

( U - c ) ( # " - a z # ) -  U " # + J N 2 # / ( U - c )  = 0, for -00 < z < co, (1) 

where U ( z )  is the dimensionless velocity of the basic flow in the horizontal x direction, 
N (z )  is the dimensionless local buoyancy frequency, sometimes called the Brunt- 
Vaisiilti frequency, J is the overall Richardson number, primes denote differentiations 
with respect to the dimensionless height z, and the stream function of the normal mode 
of disturbance is taken as # ( z )  exp {ia(x - ct)}. The complex eigenvalue c and eigen- 
function # are determined by the boundary conditions that 

q4 is bounded as z --f & 00. (2) 

For given values of the wavenumber ct one seeks the eigensolution (c ,  9) and hence the 
stability characteristics of dynamically similar flows specified by J ,  U(z )  and N(z) .  
A given mode is stable if aci < 0, and marginally stable if both aci = 0 and there 
exist unstable modes a t  neighbouring values of the wavenumber and Richardson 
number. 

As indicated above, we shall consider stably stratified flows for which there exist 
lim U ( z ) ,  = U*, say, and lim N(z ) ,  = N,, say, so that wave propagation at  infinity 

is possible. Therefore, in addition to the eigensolutions which we have already treated 
(Banks et al. 1976) and which satisfy the conditions that # --f 0 as z -+ k co, there are 
also solutions which do not vanish at  infinity. We call the former bound states and the 
latter unbound states, borrowing the names from quantum theory. As in quantum 
theory, it can easily be seen that any unbound state is linearly dependent on the 
solutions of scattering problems in which a given wave is incident upon the shear 
layer from one direction or the other and is then reflected and transmitted; indeed, 
these are the aspects of internal gravity waves considered by Booker & Bretherton 
(1967). 

These ideas can be substantiated by noting that the solutions of the Taylor- 
Goldstein equation are exponential at  infinity with exponents 

2-k m z+fm 

To be specific, we may define A* to be the root for which Re A* > 0 unless A* is pure 
imaginary, in which case we uee 

(4) y* = + (JN;,/(U*, - c ) ~  - 
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instead. So the solutions of (l) ,  (2) give # - const. exp (-h+z) as z -++ 03 unless 
A+ is pure imaginary, and # - const. exp (A- z )  as z + - co unless A- is pure imaginary. 
Thus there is a bound state unless A, or A- is pure imaginary. 

To examine the unbound states, consider a wave of unit amplitude at z = - 03, i.e. 
4 N exp ( 5 iy- z )  as z -+ - GO. Then the phase velocity is given by 

c = U-, k {JIPm,/(a2 + y?)}*, 
and the group velocity by 

1 - - {(a2 U?, + cy5)i - ay-(c- U--)  k}. 
(a2 + y5) 

Therefore energy is propagated in the z-direction with velocity - ay-(c - U-,)/ 
(a2 + y?) and we require ayJc - U--) < 0 for propagation in the positive direction. 
We may take a 3 0 henceforth without loss of generality, and then require c < U-,. 
This leads to the following boundary conditions for the scattering problem with an 
incident wave of unit amplitude a t  z = -a: 

and 
# w exp(iy-z)+Rexp(-iy-z) as z-f-m, (7) 

(8) i 
Texp(iy+z) if y$ > 0 and c < Um 

6 -  Texp(-iy+z) if y2+>0 and c>U,  as z+m, i Vexp(-A+z) if A $ > O  

where R, T and V are complex constants to be determined. We interpret R and T as 
reflexion and transmission coefficients respectively, and identify total reflexion if 
A2, > 0. If c > U-, we similarly take the incident wave such that # - exp ( - iy-z) 
as z -+ -a. 

If c > U,,, or c < U,,, in this scattering problem, then # is a complex solution of 
the real non-singular Taylor-Goldstein equation and its complex conjugate #* is an 
independent solution. Therefore their Wronskian W(#,  #*) = #d#*/dz - #* d#/dz is a 
constant. Equating values of the Wronskian a t  z = k 03 we get the usual result that 

1q2+ y+ IT12/Y-= 1, (9) 

expressing the conservation of energy flux. Note that if Umln -= c < Urn,,, then energy 
of the wave may be absorbed or fed by the mean flow a t  a critical layer, where U ( z )  = c, 
and the equation is singular so that (9) is invalid. 

These ideas can be used to extend the classification of bound states by Banks et al. 
(1976). For fixed a2, J ,  U ( z )  and positive N 2 ( z ) ,  each normal mode belongs to one of the 
following classes, any or many of which may be empty. 

Bound states. These have eigenvalues c such that h2, is complex or positive and 
eigenfunctions which vanish at infinity. 

(i) A finite number (possibly zero) of unstable modes with aci > 0 and non-singular 
eigenfunctions. There certainly are none of these modes if J N 2 / W 2  > 1 for all z 
(Miles 1961; Howard 1961). 

(ii) An equal number of stable modes with ac, < 0 whose eigenvalues and eigen- 
functions are complex conjugates of those of the previous class. 
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(iii) A finite number (almost always zero) of marginally stable modes for which 
Umin < c < Urnax and the eigenfunctions have branch points at  the critical layers 
where U ( z )  = c. Miles (1961) called these singular neutral modes or SNM’s. 

(iv) A finite number or countable infinity of stable internal gravity waves modified 
by shear with c > Umax or c < Umin and non-singular eigenfunctions. 

(v) A continuum of stable modes for which Umln < c < Umax and the eigenfunctions 
have discontinuous derivatives a t  the critical layers. These are associated with 
algebraic rather than exponential decay of the disturbance. 

Unbound states. These arise only for unbounded basic flows if N 2  $. 0 as z -+ f 03. 

They have eigenvalues such that y t  > 0 or y2 < 0 and eigenfunctions which are not 
integrable to infinity. They are specified by solution of the scattering problem. 

(vi) A continuum of stable modes with c >  Urnax or c < Umin and non-singular 
eigenfunctions. 

(vii) A continuum of stable modes with Umin < c < Urn,, and eigenfunctions singular 
at the critical layers. These internal gravity waves may be partially absorbed or in- 
tensified by the basic flow at the critical layers (Booker 13 Bretherton 1967; Jones 1968). 
(viii) A finite number (almost always zero) of marginally stable modes for which 

Umln < c < Umax and the eigenfunctions have branch points a t  the critical layers. 
These describe infinite over-reflexion owing to resonance of an incident wave of class 
(vii) with the limit of an unstable mode of class (i), the singularity invalidating equation 
(9). 

This classification can be verified with the help of the semicircle theorem (Howard 
1961). In  the complex c plane the eigenvalues of the unstable modes (i) lie inside the 
semicircle above (if a > 0)  its diameter (Urnin, Urnax) and the eigenvalues of the damped 
stable modes (ii) lie inside the semicircle below the diameter. The eigenvalues of the 
marginally stable modes (iii) and (viii) accordingly lie on the diameter itself, as do 
those of (v) and (viii). The eigenvalues of (iv) and (vi) lie on the real axis outside the 
diameter. 

It is well-known, but nonetheless not always recognized, that a critical layer is a 
singularity of an individual stable normal mode not of a general disturbance of a 
basic flow. Such a disturbance, evolving in time, is represented by a superposition of 
singular modes in a Fourier-Laplace integral (cf. Eliassen, Hoiland & Riis 1953). 
Although each stable mode may be singular at its own critical layer, different. modes 
have different layers, and the integral smooths out all the layers so that the disturbance 
is non-singular everywhere a t  each instant. If, however, the flow is slightly unstable 
then only the wave components in a narrow band are unstable and so they will even- 
tually dominate the disturbance. Thus a singular critical layer may develop in the 
limits as t -+ 03 and as J t 4, where J ,  is the value of J a t  marginal stability. This 
singularity will be removed by nonlinearity or diffusivity. For example, Brown & 
Stewartson (1978) have considered a problem of weak instability of a shear layer in an 
inviscid stratified fluid, in which a nonlinear critical layer develops. 

2. The internal gravity waves for large J 
In  this section we shall solve some scattering problems asymptotically for large 

values of J .  In  this limit one might expect that buoyancy dominates inertia, so 
that reflexion and transmission are as if U 5 0. We shall see that this intuition needs 
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qualification, in particular when c lies in the range of U ,  the analysis being rather 
different according to whether there is a critical layer or not. 

(a )  No critical layer. First suppose that c2/J -+ const. as J -+ 03. In  order to solve 
simply the first approximation to the solution of the scattering problem, let us further 
suppose that N 2  = const, = 1 say, without loss of generality. For then we see that 
R -+ 0 and T 3 1 as J -+ co, and the solution is everywhere the incident wave 

$ N $o = exp (iyz) for fixed z, (10) 

where y = + (J/c2-a2)!. (If N2(z) + const. then the analysis proceeds similarly but 
with more complications on taking $o as the solution of the problem for U 3 0.) 

This suggests that we try the expansions 

(11) I R = c - ~ R , + c - ~ R ~ +  ..., T = 1+c-1Tl+c-2Tz+ ..., 
# = #o+c-1$l+c-2$2+... as J - t c o  for fixed y. 

Now y$ = y2 + Z C - ~  JU,, + O(c-* J ) .  Therefore 

and $1 N {T,+ixUm(a2+ y2)/y}eiyZ as z -+ +co. 

Also the Taylor-Goldstein equation (1) may be rewritten exactly as 

(12) I #1 N izeiyZ U-,(a2 + y2) /y  + R, e-iyz as z -+ -GO 

9'' + y2# = - c-l{ U"/(  1 - U / C )  + (a2 + y2) (2U - U2/c ) / (  1 - U / C ) ~ }  #. (1 3) 

Equating powers of co in this equation, we confirm the first approximation $o. 
Equating powers of c-l, we find 

#;+y2$, = -{U"+2(a2+y2) U}#O. (14) 

Multiplication by eiyz and integration from z = - co to co gives 
m 

[ei"(#; - iy$J]Zm = -/ { U" + 2(a2 + y2)  U }  e2iyzdz (15) 
--oo 

and thence 

Similarly, multiplication of (14) by e-iyz and integration from x = - co to co gives 

It can be seen from (7), (8) and (10) that the limits as J -+ co and as z -+ co are not 
uniform and that therefore the unbounded terms arise in (1 2). None the less the results 
(1 6) and ( 17) can be more rigorously, but lengthily, derived by dividing out the exact 
exponential terms, then expanding the solution in inverse powers of c, and matching 
at the origin. 

To illustrate these results, take U = tanh z. Then it follows that 

R - n(y2 - a2)/cy sinh ny, T = 1 - (a2 + y2)/cy2 + O(c-2) as J + co for fixed y. 

Moreover, we can equate coefficients of c-2 in the energy flux relation (9) to deduce 
simply that Re T2 = g(T;- R:) and hence that 
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These asymptotic results agree well with direct integration of the Taylor-Goldstein 
equation. For example, taking a2 = *, J = 15000 and c = 100, we computed 
T = 0.985110+ 0.00023i and R = 0.001359- 0.00067i directly, whereas the above 
one-term approximation for R gives R = 0.001360 and the three-term approximation 

= 0.985112. 
(b) One critical layer. Booker & Bretherton (1967) have shown how the reflexion 

of an incident internal gravity wave depends crucially upon the number and local 
structure of the critical layers. This leads to many cases in the asymptotic treatment. 
We shall take the simplest first, both for its own usefulness and as a prototype for other 
cases. 

So we suppose that U-, < c < U, and that U(z,) = c has a unique root z, giving the 
height of the critical layer. We do not need to take N 2  constant here. Now the JWKB 
approximation applied to equation (1)  gives 

Therefore we may take 

and 

for z < zc, (20) 

choosing a < z, and b > z, arbitrarily. To be consistent with our normalization (7), 
(8) a t  infinity, we require 

I’ = exp [ -iJ*(/ a N(z0) N-, dzo+-)], aN-, R’ = R/I‘ 
-,C-U(Z,) c-u-, c-u-, 

and 

It will be helpful to re-arrange these solutions in the forms 

u,-c 

T‘ = Texp[ -iJf(/,* -- N, azo--)]. bN, 

#,(z) = T’(-} U ( z )  - c * exp(iJ$I,(b, 

b u(zo) -c  u,-c u,-c 

where we define 

dz,. N@O) - 
”(” ’) = 1: U(z0) - c Ui(z0- 2,) 

The JWKB approximation breaks down near z = z,, so we consider an inner limit 
as z --f z, for fixed J. In this limit the solution of the Taylor-Goldstein equation (1) is 

# N #i = A(z - z,))+ip + B(z - z,)f-+ as z J. zc, (23) 
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where p = + (JNE/UL2 - $)* and A and B are arbitrary constants. In  accord with 
Booker & Bretherton's generalization of Tollmien's result (Lin 1955) for interpreting 
the singularity at a critical layer in an inviscid fluid by taking the limit as ci 4 0 (and 
noting that our hypotheses imply that U; > 0), we deduce that 

q5i = - i e n p  A(z, - z ) * + ~ P  - ie-"pB(z, - z)*-+ as z f z,. (24) 

We can now match (21) with (23), taking lim q5( - lim q51 as J + 03 and therefore 
ztw &Z6 

A - T ' ( A ) *  { iJBN, 
exp iJ* Il(b, z,) - - log (b - z,)] and B -+ 0 as J + co. 

U,-C uc 
Similarly, matching (22) with (24), we find 

and R'+O as J + m .  
It follows that 

and R+O as J+m.  (26) 

The basic flow absorbs almost all of the energy of the incident wave at  the critical 
layer, as first shown by Booker & Bretherton (1967), so the conservation law (9) is 
invalid. We see that T is exponentially small and R is small at an as yet unspecified 
order. 

To illustrate the result (25), we consider the profile 

z for -1 < z f 1 and N 2 =  1. 
1 for z > I 

-1 for z < - 1  

Choosing b = 1 and a = - 1, we find z, = c and Il(a, b )  = 0, and therefore 

1 
1 -c ill+& 

T - ie-nb (l+c) - exp(-2iJ*c/(l-c2)} as J- too,  

in agreement with the result (63) obtained by solution of the problem in explicit terms 
of Bessel functions. 

(c) Two critical layers. The principles applied in the previous subsection may be 
applied to other cases, but the technical difficulties of the method increase with the 
number of critical layers. So we shall present just one more case, namely transmission 
through a symmetric jet for which U+, = 0, U,,, = U(0)  = 1,0 < c < 1 and U ( z )  = c 
has only two roots, say & z,. 

Then equation (1) and the radiation conditions (7), (8) at z = -1. GO may be satisfied 
to the JWKB approximation by 
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for -2, < 
and 

for z c -zc,  (31) 

as J -+ 00, where A, B,  R' and T' are complex constants to be determined, and b may 
be chosen to have any value greater than z,. To be consistent with the normalization 
of (7), (8) we require 

I' = exp [ - $ { - bN-, + / - I J  ( cN(zo) - N-,) dz,)] , R' = R/I',  
-m c-U(zo)  

and 

The inner solutions near the two critical layers at  z = zc have the same form as in 
the previous subsection. The matching is similar to, but more intricate than that 
before. With the further assumption of a symmetric form for N(z ) ,  namely, 
N ( z )  = N (  - z), it eventually gives 

where 

R+O as J-+cQ, 
(32) 
(33) 

and N,= N(z, ) .  Note that p = +(JNE/UA2--)* N J)Nc/IIJ;l as J - t co ,  and that 
U'(  - z,) = - U; > 0, and also that b appears in the expression for T in such a way 
that the solution is independent of the choice of b .  

For the example of the triangular jet, namely 

we may choose b = 1, find z, = 1 - c ,  and then use (32) to deduce that 

in agreement with the result in (69) obtained by direct solution of the problem. 
(d) An integral equation to deduce rejlexion coeflicients. It appears that the matching 

must be taken further to give the leading asymptotic behaviour of R as J +- CQ. 

However, we may estimate R more simply by use of an integral equation. A jet is the 
simplest type of flow to be treated in this way. So, to delineate the method, let us 
first suppose that U-, = U, and N-, = N, 9 0. Then we may make a Galilean trans- 
formation so that U ,  = 0 and choose the scale of J so that N, = 1. Also we may suppose 
that c > 0 without loss of generality. 
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Following the well-known method described by Morse & Feshbach (1953, p. 1071) 
we first rewrite the Taylor-Goldstein equation exactly in the form (13), or 

q5*+YZq5 = 4% ( 36) 

where 

The radiation conditions (7), (8) for the jet give 

Then, using the Green's function 
i 

G(z, zo) = --exp{-iylz-z,l}, 2Y 

(37) 

(39) 

we deduce the exact integral equation 

Taking the limit as zo -+ - co in this equation, and then isolating the coefficient of 
e6yzo, we find 

R = - J m  e-iyzS(z) $(z)  dz. 

We may now find R asymptotically by use of the JWKB approximation to $ in the 
exact expression (41). If c > Urnax, then there is no critical layer, and q5 N e-iyz as 
J + 00 for fixed y. Therefore (41) gives 

(41) 
i 

2Y - w  

in agreement with (15), the signs of y being different because here c > U-, (see the 
discussion following (8)). Note that R = O(J-4) as J + co. 

If the jet is symmetric with two critical layers at  z = i z, then we can use the JWKB 
approximation (29)-(31) to q5, q50 say, as J + co for fixed c. Now q50is exponentially 
small for z > - z,, and R --f 0 as J -+ co. Therefore we may replace the upper bound 
infinity of the integral (41) by - ze( 1 - 6) where 0 < E < 1 so that 

where q5,, is now replaced by only its incident wave component. The integrand is 
singular at z = - z,, but integration through the critical layer gives a finite value for R. 

As an illustration we consider the triangular jet (34). Then 

U" = S(z + 1) - 2S(Z)  + S(z - l), 

and z, = 1 -c. At length (43) gives 
ie2iJ*/c 

R--- as J+oo 
4J4 (44) 

in agreement with the result (69) obtained by direct solution of the problem. 
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It may be noted in summary that in subsection (a)  we have taken the limit as 
J -+ co for fixed J/c2 ,  a, U(z )  and N = 1, in subsections (b)-(d) as J -+ 03 for fixed 
c, a, U(z )  and N(z) .  In  the next section we shall take the limit as 01 -+ 0 for fixed J / a 2  
and find c for the unstable modes. These asymptotic results complement those of 
Grimshaw ( 1 9 7 6 ~ )  in what is essentially the limit as a -+ KI for fixed J / a 2 ,  c and analytic 
N ( z )  and U(z) .  He deduced corresponding results when the basic shear flow contains a 
critical layer and when it does not by a powerful application of the JWKB method and 
the theory of a function of a complex variable. Among many interesting results, he 
showed that R .+ 0 exponentially in his limit, as may also be seen from (41)  in our 
limit if U is analytic. It is, however, shown in (44)  that R -+ 0 algebraically for a 
profile U which is not analytic. 

3. Unstable long waves for basic shear layers 
We shall now examine some properties of the unstable modes which are associated 

with over-reflexion and resonance in the scattering problem. Silcock (1975) has ex- 
amined these properties, both asymptotically and numerically, for several jets, finding 
for each jet a mode of instability which tends to a propagating wave as its stability 
boundary is approached. Thus he found marginally stable modes as limits of unstable 
bound states, which are effectively modes behaving like (7 )  and (8) at  infinity with 
infinite R and T. This gives a resonance in the scattering problem, which we shall 
exemplify in 5 7 .  

Because of the comprehensiveness of Silcock’s (1975) treatment of the instability 
of jets, we shall confine our treatment to shear layers. Now Alterman (1961) considered 
the simplest shear layer, namely the vortex sheet 

and found modes with 
c2 = J /2aZT 1.  

Drazin & Howard (1966, pp. 46-57) further found a stable propagating mode and 
noted that the stability characteristics for the vortex sheet should be the same as 
those of long waves for any smoothly varying shear layer with U,, = & 1 and N*, = 1 .  
This propagating mode is now recognizable as a resonating mode with R, T = CO, and 
will be shown to be the vestige (in the limit of infinite wavelength) of the stability 
boundary of an unstable propagating mode of a rapidly varying smooth shear layer. 

Thus the long-wave theory appears as a key to the problem. So we shall quote the 
eigenvalue relation (Draxin & Howard 1966, equation (5.29),  after correction of 
misprints) for bound states as a -+ 0 for fixed J / a 2  and N 2  = 1 : 

0 = A+ W : + h _ W ” + a 2 [ j  03 w2- w:az+j 0 w2- WP,dZ] 

0 --m 

1 - A + A - [ w q O m l -  W2,/W2dZ+ w q  1 -  W2_,/W2dZ +..., (47)  
0 

--m 

where W ( z )  = U ( z )  - c and W*-m = U*, - C. 
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For a general shear layer with Uk, = & 1,  we find c = 0 when 

J / a 2 =  l - ( f a J m  l - U z d z  +o(a2 )  as a+O. (48) 
- m  

It is also readily shown from (47) that for the general antisymmetric shear layer with 
Usm = 5 1 and U (  -2) = - U(z) ,  and for 1 < J / a 2  < 2, there is an unstable mode 
such that 

- ia(J/a2 - l ) t  (sm ( U 2 -  1 )  dz  - ( J /a2  - l ) I m  ( 1  - U-2) dz )  
9 (49) 

- m  - m  
C N  

2(2 - J /a2 )  
as a + 0 for fixed J/a2.  

For the piecewise-linear shear layer (27 ) ,  (47)  gives 

0 =-(l-c)2(1-J/a2(1-c) } *+ ( 1  + ~ ) ~ { 1 -  J /a2( l  + c ) ~ } *  

- 4a[+ + ( 1  - J/a2j1 - c ) ~ } )  ( 1  - J/a2( 1 + c)~}*] + . . . (50) 

as a + 0 for fixed J/a2; hence, or from (48) ,  c = 0 when 

J/a2 = 1 -$a2+o(a2)  as a -+ 0. (51) 

For 1 < J/a2 < 2, (50) (or indeed (49)) gives an unstable mode with 

2ia(J/a2 - 9) (J /a2  - l)* 
C N  as a+O. 

(2 - J /a2 )  

The formula (52) clearly fails for J /a2  near 2 ;  this case is dealt with by noting that for 
c 9 0 (50) becomes 

2 ~ (  1 + c2) - (J /a2)  c = 8 4  1 - c2)/3 + . . . 
as a + 0. When both a and 2 - J/a2 are small, so that c too is small, this is approximated 

c3 + ( 1  - +J/a2)  c - 4ai/3 = 0. 

This gives two admissible unstable roots c and one inadmissible stable root with c = ic, 
and aci < 0. The two unstable roots are pure imaginary when 

4 J /a2  < 1 - ( 12a2)), 

by 

but are complex conjugates when 4J/a2 > 1 - (12a2)*. The critical value 

i J / a 2  = 1-(12a2)%+ ... 
as a --f 0 is thus strongly suggestive of bifurcation: this has a paralIel in the study in 
the following paragraph which will be shown to be consistent with the numerical 
results of p 7. 

For the basic shear layer with U = tanh z, we find from (48 )  that c = 0 when 

J /a2  = l-a2+o(a2) as a+ 0. 

For 1 < J/a2  < 2, (49) gives an unstable mode with 

ia(J/a2) (J /a2  - 1 ) i  
(2 - J /a2 )  

C N  (53) 
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as a -+ 0 for fixed J/a2. We note that this result is identical with equation (22) of 
Blumen, Drazin & Billings (1975) when J/a2 is replaced by the square of the Mach 
number. It follows from (47) that 

8c( 1 + c2) - 4cJ/a2 = 404 1 - c') { 2 + clog ( - - :::)]+ ... as a + ~ ,  (54) 

and therefore 

c2 = iJ/a2- 1 + +o(a) as a+ 0. 
C 1-c  

If J/a2 < 2, then this gives 

as a -f 0 for fixed J/a2. If 2 < J/a2 < 4, then 

C, = + ( ~ J / a 2 - 1 ) ~ { 1 + ~ ~ a ( 2 - ~ J / ~ 2 ) / ( ~ J / ~ 2 -  1)+ ...}, -, 

as a -+ 0 for fixed J/a2. If J/a2 > 4, then there is no instability as a -+ 0. A stability 
boundary thus approaches the curve J/a2 = 4 as a -+ 0 ;  this limit is an intricate one 
because c -+ 5 1 and the critical layer recedes to infinity. We shall exemplify this 
numerically in 9 7. If, however, both a and 2 - J/a2 are small so that c too is small, 

(57) 
(54) is approximated by c3 + (1 - 8 Jla2)  c - ia = 0. 
Analysis similar to that for the case of the piecewise-linear shear layer indicates 
bifurcation along the curve 

J/a2 = 2 - 3(2a2)* + . . . as a -+ 0. ( 5 8 )  
It can be seen that for the hyperbolic-tangent shear layer the stability boundary 

meets the ( J/a2)-axis when the critical layer recedes to infinity, becausec -+ U., = + 1 
as a -+ 0 along the boundary. Now if a = 0 we get the eigenvalue relation (46) for the 
vortex sheet and if further c = & 1 we deduce, J/a2 = 4. Thus we expect that the 
boundary meets the axis a t  J/a2 = 4 for all shear layers (with U, = 1 and U-, = - I) 
but that the way the boundary meets the axis depends upon the nature of the critical 
layer and hence the way U(z )  --f & 1 as x -+ co. This behaviour is similar to that for a 
shear layer in a compressible uniform perfect gas (Blumen et al. 1975), but for that 
problem c -+ 2 1 as the Mach number tends to infinity. 

4. The piecewise-linear mixing layer between two uniform streams 
For the shear layer (27), we can solve the Taylor-Goldstein equation (1)  piecewise, 

join up the solutions at x = 2 1 by use of the continuity of ( U  - c) q5' - U'q5 and $ 
(which follows from the continuity of the pressure and normal velocity of the fluid 
a t  the disturbed interface), and satisfy the conditions (7)  and (8) at  infinity. 

If there is a critical layer, then - 1 < c < 1 and there is only one layer. Thus 
z, = c and we may satisfy (l), (7)  and (8) by taking 

TeiY+" for 1 < z 

9 = [AI , (~ (Z  - c)} + B I , { ~ ( z  - c)}] (z - c) t  for - i < z < i i e--iy-Z+ R&-" for z < - 1, 
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where yk = + { J / (  f 1 - c ) ~  - a2)J, v = + (4 - J)* and 1, is a modified Bessel function. 
We must interpret the branch point at  z = c in the usual limit as ci \1 0 so that 
log(z-c) = log(c-z)-ni for z < c. 

The boundary conditions at  z = k 1, after some re-arrangement, give 

(1 - c)* {AI,(k+) + BI-,(k+)} - T eiy+  = 0,  

( - 1 - c)*{AI,(k-) + (BL,(k-))  -Re+- = e i y - ,  

where k* = a( ~f: 1 - c), P!(x)  = xI;,(x) - (9 + iy+( 1 - c)}Ify(x) and 

If J > f,t we replace v by ip where p = + ( J -  &)*. Therefore 

T = - 4iy- sin nv exp {i( y- - y+)}/nA 

p+(k+) A + P-(k+) B = 0, 

G+(k-) A + G-(k-)*B = - 2iyJ - 1 - c)* e i y - ,  

G*(x) = x l ; , (x )  - (4 - iy-( 1 + c)} I*,(x). 

where the discriminant of the homogeneous system is essentially 

A = {J'+(k+) G-(k-) -p-(k+)  G+(k-)} / (  1 - c)* ( - 1 - c)*. 

It follows a t  length that 

A = - 2 J i e 2 n ~  (t - :)"{l+ O(J+)}/n( 1 - c)* ( - 1 - c)J as J -+ m 

and thence that 

T ie--np+ib---y+) - and R N -e2iy-/PJ* as J + CO. (3" 
Note that p N JJ and y& N J*/(1 T c) as J -+ CQ. 

For the bound states, q5 -+ 0 as z -+ & m. Thus effectively R, T = co or 

A = 0. 

This is the eigenvalue relation for the bound states. It gives 

in agreement with (50), etc. 

J / a 2  = 2(1+c2)-8ia(1-c2)/3c+ ... as a+ 0, 

5. The triangular jet 
For the triangular jet (34) we can similarly solve the problem explicitly. Again let 

us suppose first that 0 < c < 1 so that there are two critical layers a t  +zc ,  where 
Z, = 1 - C. We now satisfy (l), (7) and (8) by taking 

Te+= for z > 1 ,  

(z  - 1 + c)* [A+I&(z - 1 + c)} + B+~-,{a(z - i + c)}] for o < z < 1, 

for - 1 < z < 0, (z+ 1 - c)* [ A  ~ , { a ( z  + i - c)> + ~ ~ - , { a ( z  + i - c)>] 

e-iyz + R eiyz  for z < - 1. 

t Although the profile is monotonic, theorem (iv) of Miles (1963), excluding the occurrence 
of singular neutral modes for J > 4, applies only to  bound states. 
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- U’qj and 4 at z = 0, k 1 ,  after 

c*{A+Iv(kl) + B+I-”(k,)} - Teiy = 0, 

P+(kl) A+ + P-(kl)  B+ = 0, 
( - 1 + C)* {A+&( - k,) + B+L”( - k,)} - ( 1  - C)* { .AI”(k , )  + B L ” ( k , ) }  = 0, 

( - 1 + c)*(A+L+( - ko) + B+L-( - ko)} + (1 - c)* {A-L+(ko) + B-L-(k,)) = 0, 

( - c)* {A-Iv( - k,) + B-I-p( - k,)} - R e-iy = eiy, 

A-P+( - k,) + B-FJ - k,) = - 2iy( - c)* eiy, 

where 

and 

These six simultaneous equations have solution 

k, = a( 1 -c), k, = ac, P*(s) = .I;”(z) - (9 - ivc) I*”@) 

L*(4 = &(4 - U*,(Z).  

AT = 8yc( 1 - c )  sin2 vn . e2iy/n2 (66) 

(67) 

and AR = - 2i ( l -  c )  e2iy{e-iY”P+(kl) LJc,) - ei””F-(k,) L+(k,)) 
x {e-ivn G+(k,) L v ( k o )  - eiyv G-(k,) Iv(ko)), 

where the discriminant of the homogeneous system is essentially 

A = 2i( 1 - c )  {e-ivnP+(kl) L-(k,) - ei””P-(k,) L+(k,)}{e- iv~ F+(k,) .I-v(ko) 

- eivn F -@,I .I”WO)}. (68) 

In  obtaining these results care must be taken to interpret correctly ( - l)*: this depends 
on whether the term originates from considerations in the upper or lower part of the 
profile. 

It follows at length that 

A N - 2ceZiP( 1 - c ) I - ~ ~ P  Jb e4n~/n2 as J 3 00 
and thence that 

T - ( ?)li* e2iy-2pn and R N - i e 2 i ~ / 4  J )  as J + 00. (69) 

Note that p - J* and y N J*/c as J --f 00. 

(1975).  
For the bound states, we have A = 0. This has been solved numerically by Silcock 

6. The Bickley jet 
For the Bickley jet, 

U=sech2z and N 2 =  1, 

the unstable modes have been investigated numerically by Silcock (1975), who found 
their complicated structure with just one varicose (odd 4) and more than one sinuous 
(even q5) unstable mode. Also some modified internal gravity waves exist as bound 
states, for which 

c = 1+2J/n(n+2)+o(J)  as J 4 0 for n = 1 ,  2 ,  ..., (71) 

in accord with Banks et al. (1976, equation ( 4 3 ) ) .  It is instructive to see what happens to 
these bound states as J increases, for they illustrate the complementary nature of the 
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bound and unbound states according as y2 = a2- J /c2  < 0 or y2 > 0 respectively. 
The bound states exist only if J < c2a2, and we shall show that the infinity of them 
given by (71) for infinitesimal J decreases to only one of them as J increases to infinity. 
But also as Jincreases for fixed a the range of c for which unbound states exist increases 
from zero to infinity because we merely need c2 < J/a2 to be able to solve the scattering 
problem. 

The nth modified internal gravity wave satisfying (71) for small J can only cease to 
exist when c J. Ji/a as J f Jn for some value J,(a). On this basis, we may take the 
leading term CD, of an 'outer' expansion q50 of the solution of the Taylor-Goldstein 
equation (1) such that q5 --f q50 as J f J, for fixed z ,  and therefore 

This is the equation for the leading term in the outer expansion. We may separate the 
sinuous and varicose modes by taking the boundary conditions 

at z = 0, 
q50 = 0, q5; = 1 nodd n even I q 5 0 =  1, q5;=0 

(73) 

respectively. The outer solution is not uniformly valid at  z = 00, because if q5 satisfies 
(1) and q5 -+ 0 as z-fco then 

q5+q5$ = Aexp(-(a2-J/c2)*z) (74) 

as z + 00 for fixed J, for some constant A(J ) .  To match lim q5< M lim q50 as J f J,, we 
find that we can match ZJO z t w  

q50z A ( J )  as z + c o ,  J f  J, (75) 

to all orders in principle. Thus equation (72) with the two-point boundary conditions 
(73) and (75) pose an eigenvalue problem to determine J,. 

Now we can solve this problem with CD, = 1 if J, = co, so we identify J1 = co. As 
J decreases from infinity to a2 UkaX = a2, we see that the coefficient of CD, in equation 
(72) becomes larger so that CD,(z) oscillates more rapidly. Therefore a2 < . . . < J3 < 
J, c co, by the usual argument of the theory of ordinary differential equations. 

With J1 = co the matching can be taken further. The expression in (74) is the exact 
inner solution apart from exponentially small terms, and we find that the outer 
solution q50 of the Taylor-Goldstein equation ( l ) ,  such that q5 --f q50 as J -f J1 = co, is 
of the form 

q50 = CDl+ J-* CD2+ J-lCD3+ ... 

with c1 = J*/a+a,J-*+a,J-l+ .... 

In order that the square-root in the exponent in (74) be positive we require that a, J - 4  
is positive. The functions CD,, CDz and CD, are readily obtained seriatively. In  the 
numerical results reported below the normalization used was such that 

A = exp {&(a2- J/c2)A log 2}. 
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FIGURE 1. Bickley jet: U = secha z, N 2  = 1. c, vs. J for the first two modes with a = 1. The 
values of J ,  (TI = 2, 3, 4) are indicated and the curve J = cz is shown by a broken line. 

After matching the outer solution to the suitably expanded and normalized inner 
solution, we find a), = 1, (D2 = a3log(g7)-aU, 

(D3 = 1 la4 U/6 - a4(9 + U )  log (4 U )  + [{log (4 U)}2  - 4 log (4 U )  - (log 2)2] 

and a, = 2a3, a2 = - 4a4(2a2+ 8) .  
Consequently the eigenvalue relation is given by 

c1 = J*/a + 2a3 J-4 - 4a4( 2a2 + 4) J-l + o( J-l), as J + 00, (76) 

where the positive square-root is taken. 
The flow characterized by (70) has also been investigated by numerically integrating 

equation (1). We have used tanh x as the independent variable and, because of sym- 
metry, confined attention to the interval (0, 1) by appropriately choosing the boundary 
condition at  the origin. A Taylor expansion about tanh z = 1 was used to provide the 
boundary conditions to start the integration, and by ‘shooting’ the two-point eigen- 
value problem was solved. The integration incorporated an automatic change of 
step-length to achieve a specified uniform accuracy throughout. The method adopted 
was to use formula (71) to provide initial estimates for the eigenvalues for small 
J and then, helped by extrapolation, we proceeded to calculate the eigenvalues for 
progressively larger values of J .  

Results were obtained with a = 1 for the first four modes with 

c, > ulna, (n = 1, 2, 3,4) 

and some of these are presented in figure 1. The outer problem defined by (72), (73) 
and (75) was also solved numerically and we were thus able to verify that J, = co and 
that J2 = 5.186, J3 = 1.680, J4 = 1.262. The eigenvalues for large J were found to agree 
with (76). We have also found very good agreement between the analytical and 
numerical predictions of q40(0) for various large values of J .  Other values of a were 
considered to test further the validity of (76). 

For c < Umin = 0, our numerical investigation suggests that there are no bound 
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states. Further, if the method of matched asymptotic expansions is applied in strict 
analogy with equations (44)-(52) of Banks et al. (1976), i t  may at length be shown 
that the first approximation to the eigenvalue relation for the present problem gives 
no stable eigenvalue as J 0,  c f 0, thus supporting the numerical investigation. 
Additional evidence to this effect comes from a related problem considered in 3 8. 

7. Hyperbolic-tangent shear layer 
For the basic flow 

U = t a n h z  and N 2 = l  for - - c o < z c c o ,  (77) 

J=a2(1 -a2)  and c = O  (78) 

some analytic results have been known a long time. Drazin (1958) showed that 

gives a neutral curve and Howard (1963) showed that there is instability for points 
just inside this curve in the first quadrant of the ( J ,  a) plane. The asymptotic results 
(53)-(58) suggest that this is not the whole picture, however, so we integrated (1) 
numerically to obtain the stability characteristics and found that there is indeed more 
to be reported. 

The numerical procedure we used is similar to that described in 3 6, a1though:the 
present problem is, of course, not symmetric. Further, x was used as the independent 
variable and the boundary conditions were usually imposed a t  x = 7 to approximate 
infinity. However, to achieve sufficient accuracy for small values of a it  was sometimes 
necessary (e.g. to verify the long-wave result (53)) to extend the range to z=  5 8. 
Also we obtained some of the eigensolutions by posing and solving the scattering 
problem, and then finding those points in the ( J ,  a) plane where the transmission 
and reflexion coefficients are singular, i.e. where there is resonance. 

Our results are somewhat similar to those of Drazin & Davey (1977), who considered 
the stability of a shear layer in a compressible homogeneous inviscid fluid. Instead of 
the parameters a and J they have a and M ,  where M is the Mach number; M 2  is the 
analogue of J /a2 ,  as noted after (53). Also note that if U ( z )  is an odd and N2(z)  an 
even function then the existence of an eigensolution $(a, J ,  c,  z )  of (I), (2) implies the 
existence of another eigensolution $*(a, J ,  -c+ ,  -2). Hence for each mode with 
c, > 0 there exists a conjugate mode with the same values of a, J and c, but with the 
opposite phase speed - c,. 

We present the results in graphical form, discussing the essential characteristics 
as necessary. In  figures 2, 3 and 4 both components of the complex phase speed are 
plotted against the wavenumber a for ‘typical’ values of J / a 2 .  In  these figures we 
have adopted the convention that when c, = 0 the complex part of the phase speed is 
denoted by a broken line whereas when c, + 0 it is denoted by a continuous line. These 
results may be better appreciated by reference to figure 5, where the contours of ci are 
plotted in terms of u and J /a2  for ci = 0.01 and ci = 0. In finding these results we have 
been motivated by a desire to establish the main features and have consequently not 
tried to consider every detail. For example, the contour ci = 0 in figure 5 is an estimate? 

7 We could have reached this conclusion more efficiently if we had followed the good advice 
of Banks et al. (1976, p. 164, para. 2) to divide out the singularity of equation (1) and solve the 
resultant Howard equation numerically. 
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FIQURE 2. Shear layer: U = tanh z, Na = 1. Variation of c, and ct with a for Jlaa = 0.91. 
ci is shown by a continuous line when c, + 0, and by a broken line when c, = 0. 
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FIUURE 3. Caption as for figure 2 but with Jla2 = 0.95. 

cr 9 c, 

FIUURE 4. Caption as for figure 2 but with J / a 2  = 1.5 and 
J /a2  = 3 in (a) and ( b )  respectively. 

based upon many of the numerical and asymptotic results presented in this paper and 
upon some numerical results not presented, notably a calculation of the contour 
ci = 0.001. In  figure 5 we have also indicated some of the lines c, = constant, and, in 
particular, the contour c, = 0 which depicts the bifurcation line outside which c, $. 0 
and inside which c,, = 0. The nature of the bifurcations in figure 3 (which corresponds to 
there being two values of a for each value of Jla2 < 1 on the bifurcation line in figure 5 )  
is clearly discernible. Figure 2, however, shows as clearly that there is no bifurcation 
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FIGWE 5. Shear layer: U = tanh z, N2 = 1. Contours of ct = 0.01 (broken) and ct = 0 (con- 
tinuous) in the (J /a2 ,  a) plane. Lines of constant c, (chain) are also shown, including the line 
of bifurcation c, = 0. 

at J / a 2  = 0.91, even though the slope of the c,-curve changes rapidly, We have not 
tried to find very accurately the least value of J / a 2  at which bifurcation occurs nor 
indeed the shape of the bifurcation curve near this minimum value; the value is 
approximately 0.93. Also in figure 6 we have plotted c, as a function of J/a2 for 
ci = 0.01 and 0. The whole curve for ci = 0 is an estimate on the same basis as the 
marginal curve in figure 5. The dotted curve in figure 6 corresponding to  ci = 0 between 
(2, 0) and (4, 1)  represents the first-order term in the first equation of (56), while the 
dotted curve corresponding to ci = 0.01 between (2, 0) and (2.95, 0.7) is based upon 
both equations in (56). We note the satisfactory join of analytical and numerical 
results. 

We chose J / a a  = 0.91 (figure 2) and 0.95 (figure 3) as values typical of bifurcation 
being absent and present respectively. The value J /a2  = 1.5 is typical of the interval 
(1,  2) and J /a2  = 3 of the interval (2, 4) (figure 4). We have compared many of these 
numerical results with the asymptotic results (53) and (55)-(58), and the agreement 
is satisfactory. 

For more convenient application of the theory we present the marginal curve in the 
( J /a )  plane in figure 7. This emphasizes that the picture is more complicated than 
the previously accepted one of a single unstable mode within the curve (78), but, of 
course, the critical value of the Richardson number is still 8. 

Einaudi & Lalas (1976) considered the same basic flow (77) but with two rigid 
horizontal walls, and found an infinity of unstable modes which vanish to leave only 
Drazin’s mode (78) in the limit as the walls recede to infinity. This suggests an inter- 
pretation of the extra modes we have just described. They are plausibly due to the 
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??rt:uRE 6. Shear layer: U = tanh z, N 2  = 1. c, vs. J/a2  for c, = 0.01 (broken) and ci = 0 (con- 
tinuous). The parts of the contours shown dotted are taken from the analytical results. 
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FIGURE 7 .  Shear layer: U = tanh z ,  N 2  = 1. Contours of c1 = 0.01 (broken) and ci = 0 (con- 
tinuous) in the ( J ,  a) plane. Lines of constant c, (chain) are also shown. 

propagation a t  infinity possible in an unbounded flow, whereas those extra modes 
found by Einaudi & Lalas are due to the trapping of waves by reflexion between the 
walls. This explains the qualitative difference between the results in the absence and 
presence of walls, however distant the walls may be. 

We are unable to find any bound states (with c > Urn,, = 1 or c < Umln = - 1) for 
the flow (77), either numerically, or by applying the method of matched asymptotic 
expansions (as in the previous section) as either J J. 0, c 4 1 or J J. 0, c t - 1. 
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FIGURE 8.  U = L sech2 z + M tanh z,  N 2  = 1. c, vs. J for the first three modes with L = 1, 
M = 4 and OL = 1. The curve c = M + J i  is also shown; for fixed J the difference between this 
and the c1 curve is less than 0.1 where J = I and decreases to zero as J increams to J,. 

The apparent absence of such modes led us to consider the ‘hybrid’ flow 

U=Lsech2z+Mtanhz  and N 2 = 1  for - - c o < z < c o .  (79) 

As LIM varies this indicates how the bound states cease to exist. We further choose 
Jf > 0 without loss of generality. In  order to have solutions decaying at infinity we 
require ( c - M ) ~  > J/a2.  The flow (79) gives U’ = 0 at z = f co and also where 
tanh z = M/2L if M < 2L. The latter gives a maximum value of U ,  Urn,, = L + M2/4L 
if L > 0; then, as MIL increases from 0 to 2 so the position at which U attains its 
maximum varies from z = 0 to z = 00. For J < 1 stable eigenvalues corresponding to 
Urn,, (i.e. springing from c = L +  M2/4L, J = 0) are expected as in the work of Banks 
et al. (1976), provided that L + M2/4L > M .  As MIL increases to 2 these modes are 
confined to an ever smaller region of the ( J ,  c )  plane and eventually disappear com- 
pletely. A numerical investigation was made using as typical the particular values 
L = 1, M = + with a2 = 1. For small values of J agreement with Banks et al. (1976, 
equation (43)) is good: for example, a t  J = 0.1 the computed values of c for the first 
three modes (n = 1, 2, 3) are 1.1080 (1.1004), 1.0791 (1.0767) and 1.0711 (1*0701), 
where the corresponding asymptotic results are shown in parentheses. For this choice 
of L, M and a2 a finite value for J1 ( = 14.94) was found, while approximate values for 
J, and J3 were 0.51 and 0.38 respectively, The variation of c, (n = 1, 2, 3) with J is 
shown in figure 8. The outer problem was then solved numerically, exactly as in 0 6, 
in order to determine J1 for a range of values of MIL where L was taken to be unity 
without loss of generality. As expected, J1 was found to decrease from infinity as 
MIL increased from zero. 
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8. An exact solution, after Miles 
For the basic flow 

U =  l-e-a and N 2 =  1 for O < x < c o ,  (80) 

there is an exact analytic solution. This profile was examined to confirm the absence 
of the modified internal gravity waves for both jet and shear layer profiles. But also 
exact solutions are of intrinsic interest and are desirable to record for use as examples. 

Following Miles (1967),  let q5 = e-azf(w),  where w = e+/( 1 - c). Then we find 

f(w) = ~ * + - a ( l - ~ ) * ( l + v ) F ( ~ ,  b ;  1+2A+; w), (81) 

where 

and U, b = 3(1+a)+A++(1+a2)*. 

This solution (81) satisfies (1) and q5 -+ 0 as z -+ co; the remaining condition # = 0 a t  
z = 0 gives the eigenvalue relation 

(82) 

Thus we require the distribution of the zeros of the hypergeometric function F. We 
use the results of Klein relating to the real zeros (cf. Van Vleck 1902) in the case of real 
canonical parameters of the hypergeometric function, i.e. A+ and u both real. We find 
that if 0 < J/(i -c)2 < min{g,(a), &, az}, where 

c = (1 - 4J/( 1 - c)2}*, Re c 2 0, A+ = {a2 - J / (  1 - c)~}* ,  Re A+ 2 0, 

F(a, b ;  1+2A+; l / ( l - ~ ) )  = 0. 

go(a) = {( 1 + "2)* - l}/{* - 2( 1 + a2)* + 2a2}, 

then there is no eigenvalue c in ( -a, 01, while if go(a) < J / (  1 - c ) ~  < min (t, a2) then 
there is just one eigenvalue in ( - 00, 01. Further, if J/( 1 - c ) ~  < min (a, a2) then there 
is no eigenvalue in [ 1, 00). 

The eigenvalue relation (82) may be rewritten in the form 

F(u, U- 2h+; 1 + 2(1+ a2$; 1 -c) = 0. (83) 

Applying the results of Klein to this form we find that for J / (  1 - c ) ~  c min (t,  a2) 
there are no zeros of (83) with 1 - c  in (0, 1 )  and thus no stable eigenvalue c in (0,  1) .  

The single bound state that has been found above arises as c decreases through 
e,(a) = 2( 1 + a2)* - 2h+ - 1, i.e. J / (  1 - c)2 increases through go(a), and is such that 
c N - (+(ao - a) B( 1 + 2h+, U , ) } ~ / ~ O  as (1  - 4 4 4  -+ a,(a), where B is the beta function. 

Next we consider 4 < J/( 1 - c ) ~  < a2 so that c is pure imaginary. Following Miles, 
we find the limiting eigenvalue relation 

(4J-  l )*COt  [ (4J-  l)+log{-c/(l-c)}] = {292(1)-92(u0)-92(b0)}-1 

as J 4 a, c f 0, (84) 

where a,, b, = 8 +A+ k (1  + a2)* and $ is the psi or digamma function. The left-hand 
side of (84) takes any value in ( - co, 00) an infinite number of times as c 4 0 with J > a. 
It follows that (84) has an infinite number of roots with a limit point a t  c = 0 for 
J > t and any a > Q, this last condition being necessary in order to satisfy the boundary 
condition at  infinity. 

In  the limit as a -+ 00 we find that the eigenvalues are given by the roots of 
KiU{ - ac/( 1 - c)} = 0, where KgB is a modified Bessel function of the second kind. 
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For the limit as J +- 00 there is no obvious analogue of Miles' asymptotic result for 
the eigenvalues: the restriction a2 > J / (  1 - c)z ensures that as J -+ 00 the canonical 
parameters of the hypergeometric function in the eigenvalue relation remain finite 
in general. However, if a is large so that c = J i /a+ O(1) and a2- J/(1- c ) ~  4 0 as 
J -+ 00, then the hypergeometric series is approximated by J0{2a(21c)9} and the eigen- 
value relation is then satisfied by (1 - c)-l = ji, ,/8a2, where j ,  , is the nth positive 
zero of the Bessel function Jo. This gives 

c N - 8a2/j;, It as J - 64a6/j:, , and a +- co. 

The basic flow (80) may also be used to form a jet: we may define 

l - eS  for z > 0, 

1-e+ for z < 0. 

(A superposition of a uniform flow field followed by a change of sense produces a 
standardized jet with U*,,, = 0.) The exact solution presented in this section, with 
#( - z )  = - $(z )  is then also a solution for the odd (varicose) modes in the jet (85), 
because the condition c$ = 0 at z = 0 has been satisfied, and continuity of $/( U - c )  
and of ( U  - c )  4' - U'$ thereby also hold at  z = 0. But the analysis indicates that there 
are no stable modes for which c 4 1, so that there are no stable odd modes for the jet 
(85) with c:J. 1; this corresponds to c 9 0 for the standardized jets of previous sections 
and thus agrees with our findings for these jets. 

9. Conclusions 
In the introduction we classified the normal modes in five types of bound states and 

three types of unbound states. In  the rest of the paper we have presented a mosaic of 
numerical and asymptotic results to build up the overall picture of these linear modes. 
We depicted the complementary nature of the spectra of the bound states which occur 
when A2, and A5 are positive and the unbound states which occur otherwise. We have 
treated the bound states similarly before (Banks et al. 1976), but our new asymptotic 
and numerical results for shear layers reveal new modes of instability. On their 
stability boundaries these new modes become waves propagating at  infinity, but seem 
not to affect the criterion of stability of the basic shear layer. 

Some of our results on unbound states, developing those of Booker & Bretherton 
(1967) and other authors, distinguish the character of the scattering sharply according 
to whether there is a critical layer or not, i.e. according to whether c lies in the range of 
the basic velocity or not. Others of our results relate the over-reflexion of the unbound 
states to the stability boundary of the bound states. We have seen that a propagating 
marginally stable mode may also be regarded as a scattered wave with infinite trans- 
mission and reflexion coefficients. In  other words, infinite over-reflexion is a resonance. 
The presence of contiguous unstable modes means that this resonance occurs only 
when the basic flow is unstable. The growth rates of these unstable modes are, however, 
usually slow, so that waves with a reflexion coefficient greater than one may build up 
before the basic flow breaks down into turbulence. 

For the basic vortex sheet (45), it  may appear that there is an infinite reflexion or 
transmission coefficient for a wave to which the flow is stable. This is true in one sense, 
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but we have shown it is unrealistic in the sense that for any smoothly varying profile, 
however closely it may approximate the discontinuous vortex sheet, there are unstable 
modes contiguous to the resonance. Again, the growth rates of these unstable modes 
vanish in the limit as the smooth profiles tend to the discontinuous one. Thus the use 
of a discontinuous profile, which has a degenerate critical layer a t  its discontinuity, 
has a restricted value as an approximation to a smoothly varying profile. 

To assess properly the significance of rapid variation of the profile and of slow 
growth rates, nonlinearity also should be considered. Grimshaw (19766) and McIntyre 
& Weissman (1978) have already considered weak nonlinearity and slow growth 
rates for discontinuous profiles and basic stratified flows, but it now appears that some 
of their results may be qualitatively different for rapidly varying shear layers. 

Most of the ideas developed in this paper can be applied to many similar problems, 
e.g. when the basic flow is of a compressible fluid, is in a rotating frame, or is of an 
electrically conducting fluid in a magnetic field. Indeed, over-reflexion was recognized 
by Lees & Lin (1946) and by Miles (1957) for the problem of parallel flow of an inviscid 
compressible fluid. The importance of over-reflexion, of extra modes propagating at 
infinity, and of critical layers in subsequent work is indicated well by Acheson (1976). 
Our conclusions in part concur with Acheson’s, but in part are a t  variance with them 
(Acheson 1976, p. 434). His work is based largely upon the use of discontinuous 
profiles, though we have shown an essential difference between them and rapidly but 
smoothly varying profiles. Our results suggest that resonant over-reflexion coexists 
with instability or a t  any rate is a mode contiguous to unstable ones for any smoothly 
varying profile. Whether the instability would break up the basic flow before over- 
reflexion could occur in practice would depend upon the relative importance of a 
number of small departures of the real flow from the idealized model. Acheson noted 
that the instability might be so weak as to permit over-reflexion for some initial 
period, and also recognized that nonlinearity and diffusivity, effects which we have 
not considered, may be important in practice. Further, we note that real flows are 
neither steady nor parallel and horizontal, and that a sinusoidal disturbance is not 
produced instantly but rather is one component in the representation of a disturbance 
as it evolves in time. All these factors must be borne in mind when interpreting the 
idealized theory we have treated here. 
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